Ca2+ pulsation in BY-2 cells and evidence for control of mechanosensory Ca2+-selective channels by the plasmalemmal reticulum

Funct Plant Biol. 2005 Oct;32(10):863-879. doi: 10.1071/FP05045.

Abstract

A previously unknown cytoskeletal structure, now named the plasmalemmal reticulum (Gens et al. 2000, Protoplasma 212, 115-134), was found in cultured BY-2 tobacco cells during a search for a force-focusing mechanism that might enhance signal transduction by the cells' mechanosensory Ca2+-selective cation channels (MCaCs). This polyhedral structure, which links cell wall, plasma membrane, and internal cytoplasm, prominently contains arabinogalactan protein (AGP). To check for reticulum-promoted Ca2+ elevation, the AGP-binding reagent (β-d-glucosyl)3 Yariv phenylglycoside has been applied to BY-2 cells expressing a free cameleon Ca2+ reporter. Ca2+ elevation was substantial and prolonged. Moreover it occurred in the nucleus as well as the cytoplasm. Cells treated with non-binding mannosyl Yariv reagent could not be discriminated from untreated controls or those treated with carrier solution alone. Supply of the MCaC inhibiter Gd3+ just before treatment with Yariv reagent prevented Ca2+ rise. These data strongly support the hypothesis that the plasmalemmal reticulum controls MCaC activity. The massive inward spread of Ca2+ suggested that entry of the ion through the channels initiated a wave of release from the ER, and YCX in the ER showed Ca2+ levels consistent with this premise. Cytosolic and nuclear Ca2+ often pulsed in control cells in near synchrony and at rates ranging from zero to five cycles per ∼20-min recording. (Pulsation was over-ridden by the applied amounts of glucosyl Yariv compound.) Suggestively but very crudely, oscillation rate was assessed as possibly correlating with stage of cell cycle. Because cell Ca2+ was lowered and pulsation was eliminated by Gd3+, MCaCs appear to participate in these endogenous fluctuations. The extent to which pulsing plays regulatory roles in relatively undifferentiated types of cells should be evaluated.