Leaf morphology, photochemistry and water status changes in resprouting Quercus ilex during drought

Funct Plant Biol. 2005 Apr;32(2):117-130. doi: 10.1071/FP04137.

Abstract

Functional and morphological (structural) characteristics of Quercus ilex L. leaves under drought stress were studied in the forest and in a nursery. We compared undisturbed individuals (controls) with resprouts emerging after clear-cut or excision. When soil water availability was high, gas-exchange was similar in resprouts and controls, despite higher midday leaf water potential, midday leaf hydration and relative water content (RWC). In moderate drought, stomatal closure was found to limit photosynthesis in controls, and in severe drought non-stomatal limitations of photosynthesis were also greater than in resprouts. Leaf structure and chemical composition changed under drought stress. Leaves tended to be smaller in controls with increasing drought, and resprouts had larger leaves and lower leaf mass area (LMA). The relationship between nitrogen (N) content and LMA implied lower N investment in photosynthetic components in controls, which could be responsible for their increased non-stomatal limitation of photosynthesis. Changes were more apparent in leaf density (D) and thickness (T), components of LMA. Decreases in D were related to reductions in cell wall components: hemicellulose, cellulose and lignin. In resprouts, reduced D and leaf T accounted for the higher mesophyll conductance (gmes) to CO2 measured.