Strange attractors induced by melting in systems with nonreciprocal effective interactions

Phys Rev E. 2020 Jun;101(6-1):063205. doi: 10.1103/PhysRevE.101.063205.

Abstract

Newton's third law-the action-reaction symmetry-can be violated for effective interbody forces in open and nonequilibrium systems that are ubiquitous in areas as diverse as complex plasmas, colloidal suspensions, active and living soft matter, and social behavior. While studying monolayer complex plasma (confined charged particles in an ionized gas) with nonreciprocal interactions mediated by plasma flows, in silico we found that an interplay between melting and thermal activation drastically transforms the collective dynamics: the order-disorder transition modifies the system's thermal steady state so that the crystal tends to melt, whereas the fluid tends to freeze, jumping chaotically between the two states. We identified this collective chaotic behavior as strange attractors formed in a monolayer complex plasma and link the strange attractor behavior to the specifics of interparticle interactions.