Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in vivo

Dev Biol. 2020 Sep 15;465(2):108-118. doi: 10.1016/j.ydbio.2020.07.006. Epub 2020 Jul 18.

Abstract

Neurons extend dendrites and axons to receive and send signals. If either type of process is removed, the cell cannot function. Rather than undergoing cell death, some neurons can regrow axons and dendrites. Axon and dendrite regeneration have been examined separately and require sensing the injury and reinitiating the correct growth program. Whether neurons in vivo can sense and respond to simultaneous axon and dendrite injury with polarized regeneration has not been explored. To investigate the outcome of simultaneous axon and dendrite damage, we used a Drosophila model system in which neuronal polarity, axon regeneration, and dendrite regeneration have been characterized. After removal of the axon and all but one dendrite, the remaining dendrite was converted to a process that had a long unbranched region that extended over long distances and a region where shorter branched processes were added. These observations suggested axons and dendrites could regrow at the same time. To further test the capacity of neurons to implement polarized regeneration after axon and dendrite damage, we removed all neurites from mature neurons. In this case a long unbranched neurite and short branched neurites were regrown from the stripped cell body. Moreover, the long neurite had axonal plus-end-out microtubule polarity and the shorter neurites had mixed polarity consistent with dendrite identity. The long process also accumulated endoplasmic reticulum at its tip like regenerating axons. We conclude that neurons in vivo can respond to simultaneous axon and dendrite injury by initiating growth of a new axon and new dendrites.

Keywords: Axon regeneration; Dendrite regeneration; Endoplasmic reticulum; Microtubule polarity; Neuronal polarity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Axons / metabolism*
  • Axons / pathology
  • Dendrites / metabolism*
  • Dendrites / pathology
  • Drosophila melanogaster
  • Female
  • Male
  • Microtubules / metabolism*