Molecular Dynamics Insights into the Nanoscale Structural Organization and Local Interaction of Aqueous Solutions of Ionic Liquid 1-Butyl-3-methylimidazolium Nitrate

J Phys Chem B. 2020 Aug 13;124(32):6972-6985. doi: 10.1021/acs.jpcb.0c01803. Epub 2020 Aug 4.

Abstract

Considering the growing number of applications of the aqueous ionic liquids (ILs), atomistic molecular dynamics (MD) simulations were used to probe the effect of water molar fraction, xw, ranging from 0.00 to 0.90, on the nanoscale local structure of 1-butyl-3-methylimidazolium nitrate, [bmim][NO3], IL. The results prove that, with water addition, the cation-anion, cation-cation, and anion-anion structural correlations are weakened, while strong anion-water and unconventional cation-water hydrogen bonds are formed in the solutions. Water molecules were detected as bridges between nitrate anions, and the water cluster size distribution at different xw's was investigated. Simulation shows a similar pattern of probability densities for water and anion around the acidic hydrogen atoms of the reference cation ring, while both species move away from the cation butyl chain. Increasing the water concentration to xw = 0.90 causes decreasing of the local arrangement of the nearest-neighboring cations, because of the weakening of cation-cation π-π stacking. In addition, this dilution reduces the probability of the in-plane cation-anion conformation, disrupts both the polar ionic network and nonpolar domains, and diminishes the nanoaggregation of the cation butyl chains compared to those of the neat IL. These results can rationalize the origins of the fluidity enhancements and transport property trends upon adding water to the imidazolium-based ILs. The current study proposes a deep atomistic-level insight into the complex coupling between water concentration, microscopic structure, and local interactions of aqueous imidazolium-based ILs with hydrophilic anions.