Chlorotoxin fusion protein regulates miR-374a and TNFAIP8 expression and inhibits glioma cell proliferation and promotes apoptosis

Cytotechnology. 2020 Oct;72(5):685-694. doi: 10.1007/s10616-020-00411-w. Epub 2020 Jul 19.

Abstract

Glioblastoma multiforme is the most common primary central nervous system malignancy, accounting for half of all intracranial primary tumors. In this study we constructed a multifunctional chlorotoxin fusion protein E-CHP that combines enhanced green fluorescent protein (E), glioma-targeting peptide chlorotoxin (C), destabilizing lipid membrane peptide riHA2 (H), and C-terminal and mouse double minute domains of p53 (P). E-CHP was expressed in Escherichia coli and purified by His affinity chromatography. Fluorescence microscopy observation showed that E-CHP could effectively target glioma cells; real-time quantitative PCR revealed that E-CHP increased miR-374a expression; and the dual luciferase reporter assay showed that tumor necrosis factor alpha-induced protein (TNFAIP)8 is a direct target of miR-374a. E-CHP and miR-374a inhibited the proliferation and migration of glioma cells, and Western blot analysis indicated that they suppressed TNFAIP8 expression in glioma cells and promoted the expression of caspase-3 and -8. Finally, E-CHP and miR-374a stimulated the apoptosis of glioma cells, as determined by flow cytometry analysis. These results suggest that miR-374a is a new candidate target for glioma therapy, whereas E-CHP fusion protein has the potential to be developed as a multifunctional carrier for targeted drug delivery and therapy.

Keywords: Chlorotoxin fusion protein; Glioma; TNFAIP8; Targeted therapy; miR-374a.