Genetic diversity among early provitamin A quality protein maize inbred lines and the performance of derived hybrids under contrasting nitrogen environments

BMC Genet. 2020 Jul 18;21(1):78. doi: 10.1186/s12863-020-00887-7.

Abstract

Background: Information on population structure and genetic diversity of germplasm in a breeding programme is useful because it enhances judicious utilisation of genetic resources to achieve breeding objectives. Seventy early maturing provitamin A (PVA) quality protein maize (QPM) inbreds developed by the IITA- maize improvement programme were genotyped using 8171 DArTseq markers. Furthermore, 96 hybrids derived from 24 selected inbreds plus four checks were evaluated under low-N and optimal environments in Nigeria during 2016 and 2017. Genotypic and phenotypic data of inbreds and hybrids respectively, were analysed to (i) assess the level of genetic dissimilarities and population structure of the inbreds, and (ii) investigate the grain yield performance of derived hybrids under low-N, optimal and across environments.

Results: Genetic diversity among the seventy inbreds was high varying from 0.042 to 0.500 with an average of 0.357. Sixty-six inbred lines with probabilities ≥0.70 were assigned to a single group. The population structure analysis, the UPGMA phylogeny, and the principal Coordinate Analysis (PCoA) of the DArTseq markers revealed a clear separation of five groups and each followed pedigree records. Clustered inbreds displayed common characteristics including high PVA levels, and drought and low-N tolerance. The top performing hybrid, TZEIORQ 40 × TZEIORQ 26 out-yielded the best hybrid control, TZEIOR 127 × TZEIOR 57 by 8, 3, and 9% under low-N, optimal, and across environments, respectively. High repeatability estimates were detected for grain yield under each and across environments. Similarly, high breeding efficiency of 71, 70 and 72% were computed under low-N, optimal, and across environments, respectively.

Conclusions: The UPGMA clustering, the structure analysis, and the PCoA consistently revealed five groups which largely followed pedigree information indicating the existence of genetically distinct groups in the inbred lines. High repeatability and breeding efficiency values estimated for grain yield of hybrids under low-N, optimal and across environments demonstrated that high productive hybrids could be developed using inbreds from the opposing clusters identified by the DArTseq markers. The 15 top performing hybrids identified, particularly TZEIORQ 40 × TZEIORQ 26 and TZEIORQ 29 × TZEIORQ 43 should be further evaluated for release and commercialization in SSA.

Keywords: DArTseq markers; Genetic diversity; Hybrids; Inbred lines; Low-N tolerance; Provitamin A; Quality protein maize; Zea mays L..

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Edible Grain / growth & development
  • Genotype
  • Hybridization, Genetic*
  • Nigeria
  • Nitrogen
  • Plant Breeding
  • Polymorphism, Genetic*
  • Provitamins / analysis*
  • Vitamin A / analysis*
  • Zea mays / chemistry
  • Zea mays / genetics*

Substances

  • Provitamins
  • Vitamin A
  • Nitrogen