Bottom-metal-printed thermo-optic waveguide switches based on low-loss fluorinated polycarbonate materials

Opt Express. 2020 Jul 6;28(14):20773-20784. doi: 10.1364/OE.396745.

Abstract

In this work, thermo-optic (TO) waveguide switches are designed and fabricated based on the bottom-metal-printed technique. Low-loss fluorinated polycarbonate (AF-Z-PC MA) and polymethyl methacrylate (PMMA) are used as core and cladding materials, respectively. The thermal stability and optical absorption characteristics of AF-Z-PC MA are analyzed. The optical and thermal field distributions of the TO switch are simulated. The insertion loss and extinction ratio of the device are found to be 4.5 dB and 19.8 dB, respectively, at a wavelength of 1550 nm. The on-off time of the switching chip is 80 µs. The electrical power consumption is approximately 8.8 mW. The proposed low-loss fluorinated polymer TO waveguide switch realized by bottom-metal-printed fabrication technology is suitable for large-scale integrated photonic circuit systems.