Methylene blue-covered superparamagnetic iron oxide nanoparticles combined with red light as a novel platform to fight non-local bacterial infections: A proof of concept study against Escherichia coli

J Photochem Photobiol B. 2020 Aug:209:111956. doi: 10.1016/j.jphotobiol.2020.111956. Epub 2020 Jul 9.

Abstract

Currently, antimicrobial photodynamic therapy (APDT) is limited to the local treatment of topical infections, and a platform that can deliver the photosensitizer to internal organs is highly desirable for non-local ones; SPIONs can be promising vehicles for the photosensitizer. This work reports an innovative application of methylene blue (MB)-superparamagnetic iron oxide nanoparticles (SPIONs). We report on the preparation, characterization, and application of MB-SPIONs for antimicrobial photodynamic therapy. When exposed to light, the MB photosensitizer generates reactive oxygen species (ROS), which cause irreversible damage in microbial cells. We prepare SPIONs by the co-precipitation method. We cover the nanoparticles with a double silica layer - tetraethyl orthosilicate and sodium silicate - leading to the hybrid material magnetite-silica-MB. We characterize the as-prepared SPIONs by Fourier transform infrared spectroscopy, powder X-ray diffraction, and magnetic measurements. We confirm the formation of magnetite using powder X-ray diffraction data. We use the Rietveld method to calculate the average crystallite size of magnetite as being 14 nm. Infrared spectra show characteristic bands of iron‑oxygen as well as others associated with silicate groups. At room temperature, the nanocomposites present magnetic behavior due to the magnetite core. Besides, magnetite-silica-MB can promote ROS formation. Thus, we evaluate the photodynamic activity of Fe3O4-silica-MB on Escherichia coli. Our results show the bacteria are completely eradicated following photodynamic treatment depending on the MB release time from SPIONs and energy dose. These findings encourage us to explore the use of magnetite-silica-MB to fight internal infections in preclinical assays.

Keywords: Antimicrobial; Escherichia coli; Magnetite; Methylene blue; Photodynamic therapy; Photosensitizer; ROS; SPIONs; Silica; Superparamagnetism.

MeSH terms

  • Escherichia coli Infections / drug therapy*
  • Humans
  • Light*
  • Magnetic Iron Oxide Nanoparticles / chemistry*
  • Methylene Blue / chemistry*
  • Microscopy, Electron, Scanning
  • Photochemotherapy / methods
  • Powder Diffraction
  • Proof of Concept Study
  • Spectrometry, X-Ray Emission
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Methylene Blue