Role of Solvent Rearrangement on Mg2+ Solvation Structures in Dimethoxyethane Solutions using Multimodal NMR Analysis

J Phys Chem Lett. 2020 Aug 6;11(15):6443-6449. doi: 10.1021/acs.jpclett.0c01447. Epub 2020 Jul 28.

Abstract

One of the main impediments faced for predicting emergent properties of a multivalent electrolyte (such as conductivity and electrochemical stability) is the lack of quantitative analysis of ion-ion and ion-solvent interactions, which manifest in solvation structures and dynamics. In particular, the role of ion-solvent interactions is still unclear in cases where the strong electric field from multivalent cations can influence intramolecular rotations and conformal structural evolution (i.e., solvent rearrangement process) of low permittivity organic solvent molecules on solvation structure. Using quantitative 1H, 19F, and 17O NMR together with 19F nuclear spin relaxation and diffusion measurments, we find an unusual correlation between ion concentration and solvation structure of Mg(TFSI)2 salt in dimethoxyethane (DME) solution. The dominant solvation structure evolves from contact ion pairs (i.e., [Mg(TFSI)(DME)1-2]+) to fully solvated clusters (i.e., [Mg(DME)3]2+) as salt concentration increases or as temperature decreases. This transition is coupled to a phase separation, which we study here between 0.06 and 0.36 M. Subsequent analysis is based on an explanation of the solvent rearrangement process and the competition between solvent molecules and TFSI anions for cation coordination.