Sub-5 nm monolayer germanium selenide (GeSe) MOSFETs: towards a high performance and stable device

Nanoscale. 2020 Jul 23;12(28):15443-15452. doi: 10.1039/d0nr02170a.

Abstract

Two-dimensional (2D) black phosphorene (BP) field-effect transistors (FETs) show excellent device performance but suffer from serious instability under ambient conditions. Isoelectronic 2D germanium selenide (GeSe) shares many similar properties with 2D BP, such as high carrier mobility and anisotropy, but is stable under ambient conditions. Herein, we explore the quantum transport properties of sub-5 nm ML GeSe MOSFETs using first-principles quantum transport simulation. A p-type (zigzag-directed) device is superior to other types (n- and p-type armchair-directed and n-type zigzag-directed). The on-state current of p-type devices (zigzag-directed), even at a 1 nm gate-length, can fulfill the requirements of high-performance applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS, 2013 version). To the best of our knowledge, these ML GeSe MOSFETs have the smallest gate-length that can fulfill the ITRS HP on-state current requirements among reported 2D material FETs.