Fast interactive medical image segmentation with weakly supervised deep learning method

Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1437-1444. doi: 10.1007/s11548-020-02223-x. Epub 2020 Jul 11.

Abstract

Purpose: To achieve accurate image segmentation, which is the first critical step in medical image analysis and interventions, using deep neural networks seems a promising approach provided sufficiently large and diverse annotated data from experts. However, annotated datasets are often limited because it is prone to variations in acquisition parameters and require high-level expert's knowledge, and manually labeling targets by tracing their contour is often laborious. Developing fast, interactive, and weakly supervised deep learning methods is thus highly desirable.

Methods: We propose a new efficient deep learning method to accurately segment targets from images while generating an annotated dataset for deep learning methods. It involves a generative neural network-based prior-knowledge prediction from pseudo-contour landmarks. The predicted prior knowledge (i.e., contour proposal) is then refined using a convolutional neural network that leverages the information from the predicted prior knowledge and the raw input image. Our method was evaluated on a clinical database of 145 intraoperative ultrasound and 78 postoperative CT images of image-guided prostate brachytherapy. It was also evaluated on a cardiac multi-structure segmentation from 450 2D echocardiographic images.

Results: Experimental results show that our model can segment the prostate clinical target volume in 0.499 s (i.e., 7.79 milliseconds per image) with an average Dice coefficient of 96.9 ± 0.9% and 95.4 ± 0.9%, 3D Hausdorff distance of 4.25 ± 4.58 and 5.17 ± 1.41 mm, and volumetric overlap ratio of 93.9 ± 1.80% and 91.3 ± 1.70 from TRUS and CT images, respectively. It also yielded an average Dice coefficient of 96.3 ± 1.3% on echocardiographic images.

Conclusions: We proposed and evaluated a fast, interactive deep learning method for accurate medical image segmentation. Moreover, our approach has the potential to solve the bottleneck of deep learning methods in adapting to inter-clinical variations and speed up the annotation processes.

Keywords: Brachytherapy; CNN; Domain adaptation; Echocardiography; Generative model; Weakly supervised segmentation.

MeSH terms

  • Brachytherapy
  • Databases, Factual
  • Deep Learning*
  • Diagnosis, Computer-Assisted / methods
  • Echocardiography
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Male
  • Neural Networks, Computer*
  • Observer Variation
  • Pattern Recognition, Automated
  • Prostate / diagnostic imaging*
  • Prostatic Neoplasms / diagnostic imaging*
  • Prostatic Neoplasms / radiotherapy*
  • Reproducibility of Results
  • Tomography, X-Ray Computed
  • Ultrasonography