Novel biomarkers in cats with congestive heart failure due to primary cardiomyopathy

J Proteomics. 2020 Aug 30:226:103896. doi: 10.1016/j.jprot.2020.103896. Epub 2020 Jul 9.

Abstract

The pathogenesis of feline cardiomyopathy and congestive heart failure (CHF) requires further understanding. In this study, we assessed serum proteome change in feline CHF, aiming to identify novel biomarker for both research and clinical use. The study comprised 15 cats in CHF, 5 cats in preclinical cardiomyopathy and 15 cats as healthy controls. Serum proteome profiles were obtained by tandem mass tag labelling followed by mass spectrometry. Protein concentrations in CHF cats were compared with healthy controls. Western blot was performed for proteomic validation. Correlations were assessed between the altered proteins in CHF and clinical variables in cats with cardiomyopathy to evaluate protein-cardiac association. Bioinformatic analysis was employed to identify pathophysiological pathways involved in feline CHF. Sixteen serum proteins were significantly different between CHF and healthy control cats (P < .05). These included serine protease inhibitors, apolipoproteins and other proteins associated with inflammation and coagulation. Clinical parameters from cats with cardiomyopathy significantly correlated with the altered proteins (P < .05). Bioinformatic analysis identified 13 most relevant functional profiles in feline CHF, which mostly associated with extracellular matrix organization and metabolism. Data are available via ProteomeXchange with identifier PXD017761. SIGNIFICANCE: Cardiomyopathies affect both cats and humans, and they can cause serious consequence such as congestive heart failure (CHF). To date, the pathophysiological mechanism of CHF is not fully understood. In this study, for the first time, we used a proteomic approach combined with bioinformatic analysis to evaluate serum protein change in cats with CHF. Results indicate systemic inflammation, coagulation protein changes, innate immunity and extracellular matrix remodeling are involved in feline CHF, which are largely comparable with findings in previous human studies. Our study provides new insights into CHF and cardiomyopathy in cats, and the identified novel biomarkers and pathophysiological pathways provide valuable information for future studies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Cardiomyopathies* / veterinary
  • Cats
  • Heart Failure* / veterinary
  • Inflammation
  • Proteomics

Substances

  • Biomarkers