Accelerated T2 Mapping of the Lumbar Intervertebral Disc: Highly Undersampled K-Space Data for Robust T2 Relaxation Time Measurement in Clinically Feasible Acquisition Times

Invest Radiol. 2020 Nov;55(11):695-701. doi: 10.1097/RLI.0000000000000690.

Abstract

T2 mapping of the intervertebral disc (IVD) can depict quantitative changes reflecting biochemical change due to loss of glycosaminoglycan content. Conventional T2 mapping is usually performed using a 2-dimensional multi-echo-spin echo sequence (2D-MESE) with long acquisition times that are generally not compatible with clinical routine. This study investigates the applicability of GRAPPATINI, a T2 mapping sequence combining undersampling, model-based reconstruction, and parallel imaging, to offer clinically feasible acquisition times in T2 mapping of the lumbar IVD.

Materials and methods: Fifty-eight individuals (26 female; mean age, 23.3 ± 8.1 years) were prospectively studied at 3 T. GRAPPATINI was conducted with the same parameters as the 2D-MESE while shortening the acquisition time from 13:18 to 2:27 minutes. The setup was also validated in a phantom experiment using a 6.48-hour-long single echo-spin echo sequence as reference. The IVDs were manually segmented on 4 central slices.

Results: The median nucleus pulposus showed a strong Pearson correlation coefficient between T2GRAPPATINI and T2MESE (rp = 0.919; P < 0.001). There was also a significant correlation for the ventral (rp = 0.241; P < 0.001) and posterior (rp = 0.418; P < 0.001) annular regions.In the single spin-echo phantom experiment, the most accurate T2 estimation was achieved using T2GRAPPATINI with a median absolute deviation of 15.3 milliseconds as compared with T2MESE with 26.5 milliseconds.

Conclusions: GRAPPATINI facilitates precise T2 mapping at 3 T in accordance with clinical standards and reference methods using the same parameters while shortening acquisition times from 13:18 to 2:27 minutes with the same parameters.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Intervertebral Disc / diagnostic imaging*
  • Lumbar Vertebrae / diagnostic imaging*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Phantoms, Imaging
  • Time Factors
  • Young Adult