Monodirectional Tissue P Systems With Promoters

IEEE Trans Cybern. 2021 Jan;51(1):438-450. doi: 10.1109/TCYB.2020.3003060. Epub 2020 Dec 22.

Abstract

Tissue P systems with promoters provide nondeterministic parallel bioinspired devices that evolve by the interchange of objects between regions, determined by the existence of some special objects called promoters. However, in cellular biology, the movement of molecules across a membrane is transported from high to low concentration. Inspired by this biological fact, in this article, an interesting type of tissue P systems, called monodirectional tissue P systems with promoters, where communication happens between two regions only in one direction, is considered. Results show that finite sets of numbers are produced by such P systems with one cell, using any length of symport rules or with any number of cells, using a maximal length 1 of symport rules, and working in the maximally parallel mode. Monodirectional tissue P systems are Turing universal with two cells, a maximal length 2, and at most one promoter for each symport rule, and working in the maximally parallel mode or with three cells, a maximal length 1, and at most one promoter for each symport rule, and working in the flat maximally parallel mode. We also prove that monodirectional tissue P systems with two cells, a maximal length 1, and at most one promoter for each symport rule (under certain restrictive conditions) working in the flat maximally parallel mode characterizes regular sets of natural numbers. Besides, the computational efficiency of monodirectional tissue P systems with promoters is analyzed when cell division rules are incorporated. Different uniform solutions to the Boolean satisfiability problem (SAT problem) are provided. These results show that with the restrictive condition of "monodirectionality," monodirectional tissue P systems with promoters are still computationally powerful. With the powerful computational power, developing membrane algorithms for monodirectional tissue P systems with promoters is potentially exploitable.