In Situ Synthesis of SERS-Active Au@POM Nanostructures in a Microfluidic Device for Real-Time Detection of Water Pollutants

ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36458-36467. doi: 10.1021/acsami.0c06725. Epub 2020 Jul 30.

Abstract

We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.

Keywords: POM-assisted interactions; charge transfer mechanism; chip reusability; large SERS-active area; organophosphorous pesticides; spatial uniformity of SERS response.