XRN2 Links RNA:DNA Hybrid Resolution to Double Strand Break Repair Pathway Choice

Cancers (Basel). 2020 Jul 7;12(7):1821. doi: 10.3390/cancers12071821.

Abstract

It was recently shown that the 5' to 3' exoribonuclease XRN2 is involved in the DNA damage response. Importantly, loss of XRN2 abrogates DNA double stranded break repair via the non-homologous end-joining pathway. However, the mechanistic details of how XRN2 functions in the non-homologous end-joining repair process are unknown. In this study, we elucidated that XRN2-mediated RNA:DNA hybrid resolution is required to allow Ku70 binding to DNA ends. These data suggest that XRN2 is required for the initiation of non-homologous end-joining repair. Interestingly, we uncovered a role for XRN2 in the homologous recombination repair pathway. Loss of XRN2 lead to a decrease in the repair of double strand breaks by homologous recombination. Strikingly, when we removed RNA:DNA hybrids by RNaseH1 over-expression, homologous recombination was not restored. We found RNA:DNA hybrid formation at and downstream of the DSB site, suggesting that unregulated transcription inhibits homologous recombination repair. In summary, our results indicate a relation between RNA:DNA hybrid resolution and double strand break repair pathway choice.

Keywords: RNA:DNA hybrids; homologous recombination; non-homologous end-joining.