Do Faster, Stronger, and More Powerful Athletes Perform Better in Resisted Sprints?

J Strength Cond Res. 2022 Jul 1;36(7):1826-1832. doi: 10.1519/JSC.0000000000003719. Epub 2020 Jul 7.

Abstract

Lizana, JA, Bachero-Mena, B, Calvo-Lluch, A, Sánchez-Moreno, M, Pereira, LA, Loturco, I, and Pareja-Blanco, F. Do faster, stronger, and more powerful athletes perform better in resisted sprints? J Strength Cond Res 36(7): 1826-1832, 2022-This study aimed to analyze the relationships between different strength, power, and speed abilities and resisted sprint performance across a wide range of sled loads (10, 30, and 50% body mass [BM]). Seventy-nine young physically active male sport science students (age: 22.8 ± 3.4 years, BM: 74.2 ± 9.1 kg, and height: 175.4 ± 8.5 cm) performed 2 testing sessions. Session 1 consisted of a 20 m sprint without any additional load and with 10, 30, and 50% BM. Session 2 consisted of countermovement jump and full squat (SQ) tests. The CMJ was performed without any additional load and with loads of 30 and 50% BM, and the SQ was performed with loads corresponding to 30, 50, 70, and 90% BM. Resisted sprint times were moderate to large correlated with unloaded sprint times (r = 0.79 to 0.89), unloaded and loaded jump height (r = -0.62 to -0.71), and SQ performance (r = -0.56 to -0.71). Negative relationships were observed between velocity loss induced by each sled load and jump and SQ performance. The magnitude of these relationships increased with increasing sled loads. In conclusion, differences in speed, strength, and power abilities may explain, at least partially, the individual response of each athlete during sprinting towing a sled, especially with heavier sled loads. Thus, faster, stronger, and more powerful athletes require heavier sled loads (relative to %BM) to experience similar exercise intensities.

MeSH terms

  • Adult
  • Athletes
  • Athletic Performance* / physiology
  • Body Height
  • Humans
  • Male
  • Posture
  • Running* / physiology
  • Young Adult