Coating doxycycline on titanium-based implants: Two in vivo studies

Bioact Mater. 2020 Jun 22;5(4):787-797. doi: 10.1016/j.bioactmat.2020.05.007. eCollection 2020 Dec.

Abstract

Regardless of the substantial progress in designing titanium-based dental implants and aseptic techniques, infection remains as the most common complication after implantation surgeries. Although, having a weakened immune system or systematic diseases is not seen as contraindicated for dental implants anymore, controlling the immune system is required to avoid surgical site infections after implantation. These patients have to control the surgical site infections by taking a high daily dose of oral antibiotics after dental implantation. The antibiotics oral administration has many side effects such as gastrointestinal symptoms, skin rashes and thrush. Coating antibiotics on the biomaterials surface could be a promising solution to reduce these disadvantages through locally releasing antibiotics in a controlled manner. The aim of this study was to investigate the effects of doxycycline coating layer on titanium-zirconium alloy surfaces in vitro and in vivo. In our previous studies, we demonstrated the chemical presence of doxycycline layer in vitro. In this study, we examined its physical presence using field emission scanning electron microscope and confocal microscope. We also analyzed its controlled released manner using Nano-Drop UV Vis spectrometer. After in vitro characterization of the coating layer, we evaluated its effects on the implant osseointegration in dogs and rabbits. The histological and histomorphometrical results exhibited no significant difference between doxycycline coated and uncoated groups regarding the implants osseointegration and biocompatibility for dental applications. Therefore, coating a doxycycline layer on TiZr implants could be favorable for reducing or removing the antibiotics oral administration after the implantation surgery.

Keywords: Antibiotic; Coating; Doxycycline; SLActive; Titanium-zirconium.