Effect of Non-Surgical Periodontal Treatment on Oxidative Stress Markers in Leukocytes and Their Interaction with the Endothelium in Obese Subjects with Periodontitis: A Pilot Study

J Clin Med. 2020 Jul 4;9(7):2117. doi: 10.3390/jcm9072117.

Abstract

Aim: The primary objective of this pilot study was to evaluate the effect of non-surgical periodontal treatment. The secondary aim was to evaluate the effect of dietary therapy on both parameters of oxidative stress in leukocytes and leukocyte-endothelial cell interactions in an obese population.

Methods: This was a pilot study with a before-and-after design. Forty-nine obese subjects with periodontitis were randomized by means of the minimization method and assigned to one of two groups, one of which underwent dietary therapy while the other did not. All the subjects underwent non-surgical periodontal treatment. We determined periodontal, inflammatory and oxidative stress parameters-total reactive oxygen species (ROS), superoxide production, intracellular Ca2+, mitochondrial membrane potential and superoxide dismutase (SOD) activity. We also evaluated interactions between leukocytes and endothelium cells-velocity, rolling flux and adhesion-at baseline and 12 weeks after intervention.

Results: Periodontal treatment improved the periodontal health of all the patients, with a reduction in serum retinol-binding protein 4 (RBP4), total superoxide production and cytosolic Ca2+ in leukocytes. In the patients undergoing dietary therapy, there were less leukocyte adhesion to the endothelium, an effect that was accompanied by a decrease in TNFα, P-selectin and total ROS and an increase in SOD activity.

Conclusions: Whereas non-surgical periodontal treatment induces an improvement in leukocyte homeostasis, dietary therapy as an adjuvant reduces systemic inflammation and increases antioxidant status which, in turn, modulates leukocyte-endothelium dynamics.

Keywords: dietary therapy; endothelial dysfunction; obesity; oxidative stress; periodontal treatment; periodontitis; reactive oxygen species.