Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS2 and Gold

J Phys Chem Lett. 2020 Aug 6;11(15):6112-6118. doi: 10.1021/acs.jpclett.0c01287. Epub 2020 Jul 17.

Abstract

Gold-mediated exfoliation of MoS2 has recently attracted considerable interest. The strong interaction between MoS2 and Au facilitates preferential production of centimeter-sized monolayer MoS2 with near-unity yield and provides a heterostructure system noteworthy from a fundamental standpoint. However, little is known about the detailed nature of the MoS2-Au interaction and its evolution with the MoS2 thickness. Here, we identify the specific vibrational and binding energy fingerprints of this interaction using Raman and X-ray photoelectron spectroscopy, which indicate substantial strain and charge doping in monolayer MoS2. Tip-enhanced Raman spectroscopy reveals heterogeneity of the MoS2-Au interaction at the nanoscale, reflecting the spatial nonconformity between the two materials. Micro-Raman spectroscopy shows that this interaction is strongly affected by the roughness and cleanliness of the underlying Au. Our results elucidate the nature of the MoS2-Au interaction and guide strain and charge doping engineering of MoS2.