Switching a HO···π Interaction to a Nonconventional OH···π Hydrogen Bond: A Completed Crystallographic Puzzle

J Org Chem. 2020 Aug 7;85(15):9801-9807. doi: 10.1021/acs.joc.0c01121. Epub 2020 Jul 17.

Abstract

In this article, we present crystallographic and spectroscopic evidence of a tunable system wherein a HO···π interaction switches incrementally to a nonconventional OH···π hydrogen bonding (HB) interaction. More specifically, we report the synthesis of substituted forms of model system 1 to study the effects of aryl ring electronic density on the qualitative characteristics of OH···π hydrogen bonds therein. The OH stretch in experimental infrared data, in agreement with density-functional theory (DFT) calculations, shows continuous red-shifts as the adjacent ring becomes more electron rich. For example, the OH stretch of an amino-substituted analogue is red-shifted by roughly 50 cm-1 compared to the same stretch in the CF3 analogue, indicating a significantly stronger HB interaction in the former. Moreover, DFT calculations (ωB97XD/6-311+G**) predict that increasing electronic density on the adjacent top ring reduces the aryl π-OH σ* energy gap with a concomitant enhancement of the OH n-π* energy gap. Consequently, a dominant π-σ* interaction in the amino substituted analogue locks the system in the in-form while a favorable n-π* interaction reverses the orientation of the oxygen-bound hydrogen in its protonated form. Additionally, the 1H NMR data of various analogues reveal that stronger OH···π interactions in systems with electron-rich aromatic rings slow exchange of the alcoholic proton, thereby revealing coupling with the geminal proton. Finally, X-ray crystallographic analyses of a spectrum of analogues clearly visualize the three distinct stages of "switch"-starting with exclusive HO···π, to partitioned HO···π/OH···π, and finally to achieving exclusive OH···π forms. Furthermore, the crystal structure of the amino analogue reveals an interesting feature in which an extended HB network, involving two conventional (NH···O) and two nonconventional (OH···π) HBs, dimerizes and anchors the molecule in the unit cell.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.