Transportation and degradation of decabrominated diphenyl ether in sequential anoxic and oxic crop rotation

Environ Pollut. 2020 Nov;266(Pt 3):115082. doi: 10.1016/j.envpol.2020.115082. Epub 2020 Jun 28.

Abstract

This work evaluated the debromination and uptake of 14C-labeled BDE-209 in rice cultivars grown in anoxic soil for 120 days (d) followed by cultivation of vegetables (peanut, eggplant and pepper) in oxic soil (120 d). Degradation of BDE-209 to lower polybrominated diphenyl ethers (PBDEs) occurred in cultivated soils, and more metabolites were released in oxic soil than in anoxic soil. The crop rotation from anoxic to oxic greatly enhanced the dissipation of BDE-209 in the soil (P < 0.05), in which the dissipation in anoxic soil planted with Huanghuazhan (HHZ, indica) and Yudao 1 (YD1, indica) were 6.8% and 2.4%, respectively, while in oxic soil with peanut and pepper were increased to 25.8% and 21.7%, respectively. The crop rotation also enhanced the degradation of BDE-209 in the soil, the recovered BDE-209 in soil after 120 d anoxic incubation with YD1 was 81.1%, but it decreased to 47.8% and 45.8% after another 120 d oxic incubation. Bioconcentration factors were between 0.23 and 0.36 for rice, eggplant and pepper but reached to 0.5 in peanut, which contains more lipids in the edible portion than the other test crops. The estimated daily intake for vegetables was 0.01-0.07 μg BDE-209-equivalent kg-1 bw day-1, which is at least two orders of magnitude below the maximum acceptable oral dose (7 μg kg-1 bw day-1). Our work confirms that crop rotation from rice to vegetable enhanced the dissipation and debromination of BDE-209 in the soil, and indicate that sequential anoxic-oxic rotation practice is considered to be effective in remediation of environmental pollutants.

Keywords: Crop rotation; Dissipation; PBDEs; Remediation; Risk assessment.

MeSH terms

  • Crop Production
  • Crops, Agricultural
  • Halogenated Diphenyl Ethers / analysis
  • Oryza*
  • Soil
  • Soil Pollutants / analysis*

Substances

  • Halogenated Diphenyl Ethers
  • Soil
  • Soil Pollutants