Coherent propulsion with negative-mass fields in a photonic lattice

Opt Lett. 2019 Dec 15;44(24):5949-5952. doi: 10.1364/OL.44.005949.

Abstract

In this Letter, we demonstrate the first, to the best of our knowledge, coherent propulsion with negative-mass fields in an optical analog. We observe a self-accelerating state, driven by a nonlinear coherent interaction of its two components that are experiencing diffractions of opposite signs in a photonic lattice, which is analogous to the interaction of two objects with opposite mass signs. Surprisingly, the coherent propulsion is highly immune to the initial phase of the two components, which is in sharp contrast with the behavior encountered in traditional coherent wave interactions. Compared to its incoherent counter-part, the coherent propulsion exhibits an enhanced acceleration.