Ancillary Ligand Effects on Heteroleptic IrIII Dye in Dye-Sensitized Photocatalytic CO2 Reduction: Photoaccumulation of Charges on Arylated Bipyridine Ligand and Its Control on Catalytic Performance

Chemistry. 2020 Dec 15;26(70):16733-16754. doi: 10.1002/chem.202002575. Epub 2020 Nov 13.

Abstract

Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.

Keywords: intraligand electron delocalization; iridium; photochemical CO2 reduction; photochemistry; sensitizer; supported catalysts.