Effect of wheat grain protein composition on end-use quality

J Food Sci Technol. 2020 Aug;57(8):2771-2785. doi: 10.1007/s13197-019-04222-6. Epub 2020 Jan 4.

Abstract

The quality of wheat products has been a new challenge next to wheat production which was achieved substantially during green revolution. The end-use quality of wheat is an essential factor for its commercial demand. The quality of wheat is largely based on the wheat storage proteins which extensively influences the dough properties. High molecular weight glutenin subunits (HMWGS), low molecular weight glutenin subunits (LMWGS) and gliadins significantly influence the end-use quality. Genomics and proteomics study of these gluten proteins of bread and durum wheat have explored new avenues for precise identification of the alleles and their role in end-use quality improvement. Secalin protein of Secale cereale encoded by Sec-1 loci and is associated with 1RS.1BL translocation has been known for deterioration of end-use quality. Chromosomal manipulations using various approaches have led to the development of new recombinant lines of wheat without secalin. Advanced techniques associated with assessment of end-use quality have integrated the knowledge of useful or deteriorating HMWGS/LMWGS alleles and their potential role in end-use quality. This review gives a comprehensive insight of different aspects of the end-use quality perspective for bread making in wheat along with some information on the immunological interference of gluten in celiac disease.

Keywords: 1RS.1BL translocation; Celiac disease; End-use quality; Gluten; Secalin.

Publication types

  • Review