Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis

Mycorrhiza. 2020 Sep;30(5):601-610. doi: 10.1007/s00572-020-00973-9. Epub 2020 Jul 3.

Abstract

The concept of symbiosis can be described as a continuum of interactions between organisms ranging from mutualism to parasitism that can also change over time. Arbuscular mycorrhizal fungi (AMF) are among the most important obligate plant symbionts. Once the symbiosis is well established, mycorrhizal plants are more tolerant to biotic or abiotic stresses, so the AMF relationship with the host plant is generally described as mutualistic. However, little is known about AMF effects on the plant during the early stages of root colonization. The aim of this work was to assess the type of interaction (mutualistic or parasitic) between the arbuscular mycorrhizal (AM) fungus Funelliformis mosseae and Solanum lycopersicum cv. Rio Grande plants, at 7, 14, 21, and 28 days after inoculation (DAI), considering that in the adopted experimental design (one plant per pot), the seedling was the only carbon source for fungus development in the absence of common mycorrhizal networks with other plants. At each harvest, mycorrhizal colonization, shoot and root weights, morphometric parameters, and photosynthetic efficiency were evaluated. The presence of the AM fungus in the tomato root system was observed starting from the 14th DAI, and its level increased over time. Few effects of the fungus presence on the considered parameters were observed, and no stress symptoms ever appeared; so, we can state that the fungus behaved as a mutualistic symbiont during the early stages of plant growth. Moreover, a trend towards a positive effect on plant growth was observed at 28 DAI in mycorrhizal plants.

Keywords: AM fungi; Funneliformis mosseae; Photosynthetic efficiency; Symbiosis; Tomato.

MeSH terms

  • Glomeromycota*
  • Mycorrhizae*
  • Plant Roots
  • Solanum lycopersicum*
  • Symbiosis