An ultra-high bandwidth nano-electronic interface to the interior of living cells with integrated fluorescence readout of metabolic activity

Sci Rep. 2020 Jul 1;10(1):10756. doi: 10.1038/s41598-020-67408-5.

Abstract

We present the first ever broadband, calibrated electrical connection to the inside of a cell. The interior of a vital, living cell contains multiple dynamic and electrically active organelles such as mitochondria, chloroplasts, lysosomes, and the endoplasmic reticulum. However, little is known about the detailed electrical activity inside the cell. Here we show an ultra-high bandwidth nano-electronic interface to the interior of living cells with integrated fluorescence readout of metabolic activity. On-chip/on-petri dish nanoscale capacitance calibration standards are used to quantify the electronic coupling from bench to cell from DC to 26 GHz (with cell images at 22 GHz). The interaction of static to high frequency electromagnetic fields with the cell constituents induce currents of free charges and local reorganization of linked charges. As such, this enables a direct, calibrated, quantitative, nanoscale electronic interface to the interior of living cells. The interface could have a variety of applications in interfacing life sciences to nano-electronics, including electronic assays of membrane potential dynamics, nano-electronic actuation of cellular activity, and tomographic, nano-radar imaging of the morphology of vital organelles in the cytoplasm, during all phases of the cell life cycle (from development to senescence), under a variety of physiological environments, and under a broad suite of pharmacological manipulations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biotechnology
  • Calibration
  • Cell Survival
  • Chloroplasts / metabolism
  • Cytoplasm / metabolism
  • Electromagnetic Fields*
  • Electronics*
  • Endoplasmic Reticulum / metabolism
  • Fluorescence
  • HeLa Cells
  • Humans
  • Lysosomes / metabolism
  • Membrane Potentials
  • Microscopy, Atomic Force
  • Microwaves
  • Mitochondria / metabolism
  • Nanotechnology
  • Spectrometry, Fluorescence*