The geno-spatio analysis of Mycobacterium tuberculosis complex in hot and cold spots of Guangxi, China

BMC Infect Dis. 2020 Jul 1;20(1):462. doi: 10.1186/s12879-020-05189-y.

Abstract

Background: At present, there are few studies on polymorphism of Mycobacterium tuberculosis (Mtb) gene and how it affects the TB epidemic. This study aimed to document the differences of polymorphisms between tuberculosis hot and cold spot areas of Guangxi Zhuang Autonomous Region, China.

Methods: The cold and hot spot areas, each with 3 counties, had been pre-identified by TB incidence for 5 years from the surveillance database. Whole genome sequencing analysis was performed on all sputum Mtb isolates from the detected cases during January and June 2018. Single nucleotide polymorphism (SNP) of each isolate compared to the H37Rv strain were called and used for lineage and sub-lineage identification. Pairwise SNP differences between every pair of isolates were computed. Analyses of Molecular Variance (AMOVA) across counties of the same hot or cold spot area and between the two areas were performed.

Results: As a whole, 59.8% (57.7% sub-lineage 2.2 and 2.1% sub-lineage 2.1) and 39.8% (17.8% sub-lineage 4.4, 6.5% sub-lineage 4.2 and 15.5% sub-lineage 4.5) of the Mtb strains were Lineage 2 and Lineage 4 respectively. The percentages of sub-lineage 2.2 (Beijing family strains) are significantly higher in hot spots. Through the MDS dimension reduction, the genomic population structure in the three hot spot counties is significantly different from those three cold spot counties (T-test p = 0.05). The median of SNPs distances among Mtb isolates in cold spots was greater than that in hot spots (897 vs 746, Rank-sum test p < 0.001). Three genomic clusters, each with genomic distance ≤12 SNPs, were identified with 2, 3 and 4 consanguineous strains. Two clusters were from hot spots and one was from cold spots.

Conclusion: Narrower genotype diversity in the hot area may indicate higher transmissibility of the Mtb strains in the area compared to those in the cold spot area.

Keywords: Genotypes; Influence; Polymorphisms; Spatial; Tuberculosis.

MeSH terms

  • China / epidemiology
  • Cluster Analysis
  • Cold Temperature*
  • Epidemics*
  • Genotype
  • Hot Temperature / adverse effects*
  • Humans
  • Incidence
  • Mycobacterium tuberculosis / genetics*
  • Mycobacterium tuberculosis / isolation & purification
  • Phylogeny
  • Polymorphism, Single Nucleotide
  • Sputum / microbiology
  • Tuberculosis, Pulmonary / diagnosis*
  • Tuberculosis, Pulmonary / epidemiology*
  • Tuberculosis, Pulmonary / transmission
  • Whole Genome Sequencing