Effects of pH on the Formation of PIC Micelles from PAMAM Dendrimers

Langmuir. 2020 Jul 28;36(29):8367-8374. doi: 10.1021/acs.langmuir.0c00598. Epub 2020 Jul 15.

Abstract

Dendrimer-based PIC micelles are novel nanostructures from the assembly of dendrimers with polyion-neutral diblock copolymers. Because of the branched and three-dimensional structure of dendrimers, understanding the electrostatic assembly is challenging yet essential for manipulating the formation and property of the PIC micelles. Herein, we present the pH effects on the assembly of amine-terminated PAMAM dendrimers with PSS92-b-PEO113 diblock copolymers. The step-wise protonation of primary and tertiary amine groups of PAMAM allows us to manipulate the number of the positive charges by tuning pH. We find that the assembly based on the surface charges of PAMAM from G2 to G7 at pH 7 leads to well-defined micelles with high stability against salt. At pH 3, both the interior and surface charges contribute to the assembly, and the formed micelles are sensitive to ionic strength, namely, increasing salt concentration results in the formation of elongated (G2-G5) or bigger (G7) aggregates. Our study reveals the pH manipulation on the assembly of PAMAM dendrimers with linear polyelectrolytes and displays new findings that shall be helpful for understanding the assembly of asymmetric polyelectrolytes, as well as for designing new PIC micelles and functional soft nanocarriers.