Influence of CaF2@Al2O3 on Cutting Performance and Wear Mechanism of Al2O3/Ti(C,N)/CaF2@Al2O3 Self-Lubricating Ceramic Tools in Turning

Materials (Basel). 2020 Jun 29;13(13):2922. doi: 10.3390/ma13132922.

Abstract

This study aimed at improving the cutting performance of a ceramic tool to which were added solid lubricant particles. We prepared the self-lubricating ceramic tool by adding CaF2@Al2O3 instead of CaF2, and the self-lubricating ceramic tool with Al2O3 as matrix phase, Ti(C,N) as reinforcement phase. The properties of the ceramic tool with different contents of CaF2@Al2O3 and CaF2 were studied by turning 40Cr. Compared with the ceramic tool with 10 vol.% CaF2, the main cutting force and the cutting temperature of the ceramic tool with 10 vol.% CaF2@Al2O3 decreased by 67.25% and 38.14% respectively. The wear resistance and machining surface quality of the ceramic tool with CaF2@Al2O3 were better than the ceramic tool to which were directly added CaF2. The optimal content of CaF2@Al2O3 particles was determined to be 10 vol.%. The addition of CaF2@Al2O3 particles effectively reduces the adverse effect of direct addition of CaF2 particles on the ceramic tool, and plays a role in improving the cutting performance of the ceramic tool.

Keywords: ceramic tool; coating; cutting performance; wear.