[Impact of Hydraulic Retention Time on Performance of Partial Nitrification Granular Sludge in Continuous Stirred-Tank Reactor]

Huan Jing Ke Xue. 2020 Apr 8;41(4):1794-1800. doi: 10.13227/j.hjkx.201911012.
[Article in Chinese]

Abstract

The effects of different hydraulic retention time (HRT) on short-cut nitrification granular sludge were studied in a continuous stirred-tank reactor (CSTR) by maintaining stable influent ammonia nitrogen load. Particle size distribution, extracellular polymeric substances (EPS), and functional bacterial kinetics were analyzed. The morphology of granular sludge, the performance of the CSTR, and the activity of functional microorganisms were investigated. The high throughout sequencing technology of MiSeq was employed to analyze the structure of the microbial community in sludge. The results showed that the ammonia nitrogen removal rate in the reactor was gradually increased from 80% to 95%, and the nitrite accumulation rate was always over 85% when the HRT was decreased from 4 h to 1 h. Particle size distribution of granular sludge was greatly influenced by HRT. The mass fraction of granules with a diameter smaller than 0.3 mm and larger than 1.6 mm was gradually declined, whereas the mass fraction of granules with a diameter between 0.3 mm and 0.8 mm was increased when HRT was shortened from 4 h to 1 h. The dominating proportion of granules with a diameter between 0.3 mm and 0.8 mm reached about 50% when HRT was 1 h. The impact of HRT on the activity of functional microorganisms was studied, and HRT activity was found to be closely related to the size of granular sludge. Proteobacteria were dominant in the system. AOB enrichment was represented by Nitrosomonas, which was more than 56%. Shortening HRT is beneficial for the enrichment of AOB.

Keywords: continuous stirred-tank reactor (CSTR); high-throughput sequencing; hydraulic retention time (HRT); microbial community characteristics; partial nitrification granular sludge; particle sizes distribution.

Publication types

  • English Abstract