Ideal placement of an implant considering the positional relationship to an opposing tooth in the first molar region: a three-dimensional finite element analysis

Int J Implant Dent. 2020 Jul 1;6(1):31. doi: 10.1186/s40729-020-00223-9.

Abstract

Background: Excessive loading from the occlusion is known as a major pathological factor in implant failure. The force applied to the implant varies depending on the positional relationship to an opposing tooth in clinical cases. However, no studies have clarified the relationship between the discrepancy and mechanical complications.

Materials and methods: The study enrolled patients whose mandibular first molar was missing and was opposed by a natural maxillary first molar. The horizontal and vertical distance between the residual ridge and the occlusal surface of the maxillary first molar were measured from computerized tomograms. Subsequently, four finite element models were constructed in combinations of horizontal and vertical discrepancies. Additionally, the effect of inclined implantation and angled abutments were examined in a large clearance model. Maximum von Mises stress values generated in abutments under 90° or 60° loading vectors were compared with a three-dimensional finite element method.

Results: Data from 123 subjects (39 males and 84 females, average age 55.2 ± 11.4 (SD) years) were collected for the analyses. Under all conditions, the stress on the load side (the buccal side) was concentrated on the platform, and the stress on the opposite side (the lingual side) was concentrated on the top of the abutment tube inserted into the implant. In comparison to 90° loading vectors, the maximum von Mises stresses of each model were 1.20 to 2.67 times under 60° loading vectors. For inclined implantation, the maximum stress was 8.4% less at a 90° load and 9.7% less at a 60° load compared with vertical implantation. With angled abutments, the maximum stress was 15.7% less at a 90° load and 30.0% less at a 60° load compared with vertical implantation.

Conclusion: In cases of progressive alveolar resorption with a large clearance between the implant and the opposing teeth, a higher stress concentration was observed at the joint between the implant and the abutment. Our findings also showed that stress concentration around this area can be reduced by the use of inclined implantation and angled abutments under the condition of a horizontal offset between the implant and opposing teeth.

Keywords: CBCT; Dental implants; Finite element analysis; Stress distribution.