Does evolution design robust food webs?

Proc Biol Sci. 2020 Jul 8;287(1930):20200747. doi: 10.1098/rspb.2020.0747. Epub 2020 Jul 1.

Abstract

Theoretical works that use a dynamical approach to study the ability of ecological communities to resist perturbations are largely based on randomly generated ecosystem structures. By contrast, we ask here whether the evolutionary history of food webs matters for their robustness. Using a community evolution model, we first generate trophic networks by varying the level of energy supply (richness) of the environment in which species adapt and diversify. After placing our simulation outputs in perspective with present-day food webs empirical data, we highlight the complex, structuring role of this environmental condition during the evolutionary setting up of trophic networks. We then assess the robustness of food webs by studying their short-term ecological responses to swift changes in their customary environmental richness. We reveal that the past conditions have a crucial effect on the robustness of current food webs. Moreover, directly focusing on connectance of evolved food webs, it turns out that the most connected ones appear to be the least robust to sharp depletion in the environmental energy supply. Finally, we appraise the 'adaptation' of food webs themselves: generally poor, except in relation to a diversity of flux property.

Keywords: community evolution models; connectance; environmental richness; food webs; robustness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Biological Evolution*
  • Ecosystem
  • Food Chain*

Associated data

  • figshare/10.6084/m9.figshare.c.5025725