Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage

Mikrochim Acta. 2020 Jun 29;187(7):414. doi: 10.1007/s00604-020-04393-6.

Abstract

Fluorinated graphene/gold nanocage (FGP/AuNC) nanocomposite was developed for simultaneous determination of heavy metals using square wave anodic stripping voltammetry. Under optimized conditions, with a buffer pH of 5.0, a deposition potential of - 1.25 V, and a deposition time of 140 s, the method can obtain the best results. The FGP/AuNC electrode exhibits low limits of detection (0.08, 0.09, 0.05, 0.19, 0.01 μg L-1), wide linear ranges (6-7000, 4-6000, 6-5000, 4-4000, 6-5000 μg L-1), and well-separated stripping peaks (at - 1.10, - 0.77, - 0.50, - 0.01, 0.31 V vs Ag/AgCl) towards Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+, respectively. Furthermore, the FGP/AuNC electrode is also used for simultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ in real samples (peanut, rape bolt, and tea). Highly consistent results are found between the electrochemical method and atomic fluorescence spectrometry/inductively coupled plasma-mass spectrometry. The method has been successfully applied to the determination of heavy metal ions in agricultural food. Graphical abstract Schematic representation of simultaneous determination of heavy metal ions by electrochemical method. The FGP/AuNC (fluorinated graphene/gold nanocage) electrode is used to simultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ by square wave anode stripping voltammetry.

Keywords: Cadmium; Copper; Electrochemistry; Food safety; Lead; Mercury; Modified electrode; Voltammetry; Zinc.

Publication types

  • Research Support, Non-U.S. Gov't