LCZ696 mitigates diabetic-induced nephropathy through inhibiting oxidative stress, NF-κB mediated inflammation and glomerulosclerosis in rats

PeerJ. 2020 Jun 19:8:e9196. doi: 10.7717/peerj.9196. eCollection 2020.

Abstract

Background: Diabetic nephropathy (DN) is among the most common microvascular complications of diabetes resulting in end-stage renal disease and therefore search for candidates which can ameliorate the kidney function is needed simultaneously with standard diabetic pharmacotherapy. The current study was aimed to investigate the effect of long term sacubitril/valsartan therapy (LCZ696) in diabetic rats to assess its ameliorative impact against various pathological parameters such as oxidative stress, inflammation and glomerulosclerosis associated with chronic DN.

Methods: A single dose (60 mg/kg/day) of STZ was used to induce type 1 diabetes in adult male wistar rats. 2 weeks after diabetes induction, these rats were treated orally with valsartan (31 mg/kg) or LCZ696 (68 mg/kg) for 6 weeks. At end of the treatment period, serum and kidney samples were collected and analyzed. The serum levels of glucose, insulin, urea, creatinine, TNF-α, IL-1β, IL-6 and IL-10 levels were estimated. In renal tissue homogenate, the levels of inflammatory markers such as TNF-α, IL-1β, IL-6, NF-kB along with oxidative stress biomarkers including thiobarbituric acid-reacting substances (TBARs), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) were assessed. Histological changes were observed in kidney.

Results: Time course therapy withLCZ696 and valsartan in diabetic rats resulted in significant reduction of serum glucose, urea and creatinine levels (P < 0.05). Additionally, serum of treated diabetic rats showed a diminution in inflammatory (TNF-α, IL-1β, IL-6) and increment in anti-inflammatory (IL-10) cytokines levels (P < 0.05). Tissue homogenate of the kidney extracted from LCZ696 and valsartan treated diabetic rats revealed a substantial reduction in the levels of inflammatory markers such as TNF-α, IL-1β, IL-6, NF-kB and sufficient restoration of anti-oxidant enzyme levels (P < 0.05). Finally, in the histological sections of the kidney, prevention of renal injury was observed with limited necrosis and inflammatory cells infiltration.

Conclusion: Present data suggest that LCZ696 has sufficient therapeutic potential to restrict DN progression through inhibiting inflammation, oxidative stress and glomerulosclerosis.

Keywords: Diabetic nephropathy; Glomerulosclerosis; Inflammation; LCZ696; Oxidative stress.

Grants and funding

The Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia funded this work through the research group project number RGP-1440-085. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.