Therapeutic Angiogenesis Using HGF Plasmid

Ann Vasc Dis. 2020 Jun 25;13(2):109-115. doi: 10.3400/avd.ra.20-00035.

Abstract

Hepatocyte growth factor (HGF) is secreted from stromal and mesenchymal cells, and its receptor cMet is expressed on various types of cells such as smooth muscle cells, fibroblast, and endothelial cells. HGF stimulates epithelial and endothelial cell proliferation, motility, and morphogenesis in a paracrine and autocrine manner, organizing multistep of angiogenesis in many organs. In addition, HGF is recognized as a potent anti-inflammatory and anti-fibrotic growth factor, which has been proved in several animal studies, including neointimal hyperplasia and acute myocardial infarction model in rodent. Thus, as compared to other angiogenic growth factors, HGF exerts multiple effects on ischemic tissues, accompanied by the regression of tissue inflammation and fibrosis. These data suggest the therapeutic potential of the HGF for peripheral artery disease as it being accompanied with chronic tissue inflammation and fibrosis. In the present narrative review, the pleiotropic action of the HGF that differentiates it from other angiogenic growth factors is discussed first, and later, outcomes of the human clinical study with gene therapy are overviewed.

Keywords: HGF; gene therapy; peripheral artery disease.