Growth differentiation factor 15 as mortality predictor in heart failure patients with non-reduced ejection fraction

ESC Heart Fail. 2020 Oct;7(5):2223-2229. doi: 10.1002/ehf2.12621. Epub 2020 Jun 26.

Abstract

Aims: The prognostic value of biomarkers in patients with heart failure (HF) and mid-range (HFmrEF) or preserved ejection fraction (HFpEF) has not been widely addressed. The aim of this study was to assess whether the prognostic value of growth differentiation factor 15 (GDF-15) is superior to that of N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with HFmrEF or HFpEF.

Methods and results: Heart failure patients with either HFpEF or HFmrEF were included in the study. During their first visit to the HF unit, serum samples were obtained and stored for later assessment of GDF-15 and NT-proBNP concentrations. Patients were followed up by the HF unit. The main endpoint was all-cause mortality. A total of 311 patients, 90 (29%) HFmrEF and 221 (71%) HFpEF, were included. Mean age was 72 ± 13 years, and 136 (44%) were women. No differences were found in GDF-15 or NT-proBNP concentrations between both HF groups. During a median follow-up of 15 months (Q1-Q3: 9-30 months), 98 patients (32%) died, most (71%) of cardiovascular causes. Patients who died had higher median concentrations of GDF-15 (4085 vs. 2270 ng/L, P < 0.0001) and NT-proBNP (1984 vs. 1095 ng/L, P < 0.0001). A Cox multivariable model identified New York Heart Association Functional Class III (P = 0.04), systolic blood pressure (P = 0.01), left atrial diameter (P = 0.03), age >65 years (P < 0.0001), and GDF-15 concentrations (P = 0.01) but not NT-proBNP as independent predictors of all-cause mortality. The area under the curve was 0.797 for the basic model including NT-proBNP, and the area under the curve comparing the overall model was 0.819, P = 0.016 (DeLong's test). Integrated discrimination improvement index after the inclusion of GDF-15 in the model with the mortality risk factors was 0.033; that is, the ability to predict death increased by 3.3% (P = 0.004). Net reclassification improvement was 0.548 (P < 0.001); that is, the capacity to improve the classification of the event (mortality) was 54.8%. GDF-15 concentrations were divided in tertiles (<1625, 1625-4330, and >4330 ng/L), and survival curves were evaluated using the Kaplan-Meier technique. Patients in the highest tertile had the poorest 5 year survival, at 16%, whereas the lowest tertile had the best survival, of 78% (P < 0.001).

Conclusions: Growth differentiation factor 15 was superior to NT-proBNP for assessing prognosis in patients with HFpEF and HFmrEF. GDF-15 emerges as a strong, independent biomarker for identifying HFmrEF and HFpEF patients with worse prognosis.

Keywords: Biomarkers; Chronic heart failure; GDF-15; HFmrEF; HFpEF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Biomarkers
  • Female
  • Growth Differentiation Factor 15*
  • Heart Failure* / diagnosis
  • Humans
  • Male
  • Middle Aged
  • Prognosis
  • Stroke Volume

Substances

  • Biomarkers
  • GDF15 protein, human
  • Growth Differentiation Factor 15