In Vitro Simulation of Dental Implant Bridges Removal: Influence of Luting Agent and Abutments Geometry on Retrievability

Materials (Basel). 2020 Jun 21;13(12):2797. doi: 10.3390/ma13122797.

Abstract

Implant fixed dental prostheses are widely used for the treatment of edentulism, often preferred over the screw-retained ones. However, one of the main features of an implant-supported prosthesis is retrievability, which could be necessary in the case of implant complications. In this study, the retrievability of implant-fixed dental prostheses was investigated considering two of the main factors dental practitioners have to deal with: the abutments geometry and the luting agent. Impulsive forces were applied to dental bridge models to simulate crowns' retrievability in clinical conditions. The number of impulses and the impulsive force delivered during each test were recorded and used as retrievability indexes. One-hundred-and-five tests were conducted on 21 combinations of bridges and luting agents, and a Kruskal-Wallis test was performed on the results. The abutment geometry significantly influenced the number of impulses needed for retrieval (p < 0.05), and a cement-dependent trend was observed as well. On the other hand, the forces measured during tests showed no clear correlation with bridge retrievability. The best retrievability was obtained with long, slightly tapered abutments and a temporary luting agent.

Keywords: Coronaflex; abutments geometry; dental bridge; luting agents; retrieval.