Observation of accelerating solitary wavepackets

Phys Rev E. 2020 May;101(5-1):050201. doi: 10.1103/PhysRevE.101.050201.

Abstract

We study theoretically and observe experimentally the evolution of solitary surface gravity water wavepackets propagating in homogeneous and time-dependent flow created by a computer-controlled water pump, resulting in an effective linear potential. Unlike a potential free soliton, in this case the wavepacket envelope accelerates, while its phase is proportional to the cubic power of the position in the water tank. For increased wave steepness, we observe the emergence of asymmetry in the envelope, and hence it no longer retains its soliton shape. Furthermore, we study a case of ballistic dynamics of solitary surface gravity water wavepackets with initial nonzero momentum and demonstrate that their trajectory is similar to that of a projectile pulled by gravity. Nevertheless, their envelope shape is preserved during propagation, and the envelope phase is identical to that measured without an initial momentum.