Multifunctional, durable and highly conductive graphene/sponge nanocomposites

Nanotechnology. 2020 Nov 13;31(46):465502. doi: 10.1088/1361-6528/ab9f73.

Abstract

Porous functional materials play important roles in a wide variety of growing research and industrial fields. We herein report a simple, effective method to prepare porous functional graphene composites for multi-field applications. Graphene sheets were non-chemically modified by Triton®X-100, not only to maintain high structural integrity but to improve the dispersion of graphene on the pore surface of a sponge. It was found that a graphene/sponge nanocomposite at 0.79 wt.% demonstrated ideal electrical conductivity. The composite materials have high strain sensitivity, stable fatigue performance for 20 000 cycles, short response time of 0.401 s and fast response to temperature and pressure. In addition, the composites are effective in monitoring materials deformation and acoustic attenuation with a maximum absorption rate 67.78% and it can be used as electrodes for a supercapacitor with capacitance of 18.1 F g-1. Moreover, no expensive materials or complex equipment are required for the composite manufacturing process. This new methodology for the fabrication of multifunctional, durable and highly conductive graphene/sponge nanocomposites hold promise for many other applications.