Integrated study of genotoxicity biomarkers in schoolchildren and inhalable particles in areas under petrochemical influence

Environ Res. 2020 Sep:188:109443. doi: 10.1016/j.envres.2020.109443. Epub 2020 Apr 21.

Abstract

This study aimed to evaluate genotoxicity effects of inhalable particulate matter from areas influenced by a petrochemical complex on exposed children population. Peripheral blood and buccal mucosa exfoliated cells were collected from 54 children (5-12 years) at two public schools, 2.5 Km (Site NW) and 35 km (Site NWII) from the main industrial emission source. These areas lie in the first wind direction from a petrochemical complex. Blood samples were used to Comet Assay (CA) evaluating the tail intensity and to the cytokinesis-block micronucleus cytome assay (CBMN-cyt), assessing the frequency of micronucleus (MN), nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). Buccal micronucleus cytome assay (BMCyt) was used to detect MN and nuclear abnormalities. Mutagenicity of particulate matter (PM) organic extracts from these two sites, besides from one in the second wind direction (NE) was evaluated by Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024 with and without metabolic activation (S9). The site closest to the petrochemical complex (NW) presented worse air quality, evidenced by greater PM mutagenicity and more toxic PAHs profile (ΣTEQ). Also, Tail intensity was significantly higher at this site (10.65 ± 0.78) compared to site NWII (6.73 ± 0.92). MN frequencies in CBMN-cyt did not differ among groups, but was significantly higher than an external reference site. NBUDs were significantly higher at site NWII. BMCyt showed no difference among the groups for MNs and NBUDs. Site NWII showed higher frequencies of karyorrhexis and karyolysis. All samples, even within the PM limits, presented genotoxic potential. Results showed that the children are exposed to a mixture of contaminants from different sources, and that the proximity of the petrochemical industry gives a cause of concern. Actions must be taken to identify and reduce emissions and hazardous effects, since air quality standards are not enough to ensure the exposed population health.

Keywords: Air pollution; Genetic toxicology; Human biomonitoring; PAHs; PM10; PM2.5.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers
  • Child
  • Comet Assay
  • DNA Damage*
  • Humans
  • Micronucleus Tests
  • Particulate Matter* / toxicity

Substances

  • Biomarkers
  • Particulate Matter