Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation

ACS Nano. 2020 Nov 24;14(11):14635-14645. doi: 10.1021/acsnano.0c03754. Epub 2020 Jun 23.

Abstract

Acoustic-based techniques can manipulate particles in a label-free, contact-free, and biocompatible manner. However, most previous work in acoustic manipulation has been constrained by axisymmetric patterns of pressure nodes and antinodes. Acoustic holography is an emerging technique that offers the potential to generate arbitrary pressure distributions which can be applied to particle manipulation with higher degrees of freedom. However, since current acoustic holography techniques rely on acoustic radiation forces, which decrease dramatically when the target particle size decreases, they have difficulty manipulating particles in the micro/nanoscale. Here, we introduce a holography technique that leverages both an arbitrary acoustic field and controllable fluid motion to offer an effective approach for manipulating micro/nano particles. Our approach, termed acoustofluidic holography (AFH), can manipulate a variety of materials, including cells, polymers, and metals, across sizes ranging from hundreds of micrometers to tens of nanometers.

Keywords: acoustic tweezers; acoustics; acoustofluidics; cell pattern; nanoparticle manipulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acoustics
  • Holography*
  • Nanoparticles