Population inversion X-ray laser oscillator

Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15511-15516. doi: 10.1073/pnas.2005360117. Epub 2020 Jun 22.

Abstract

Oscillators are at the heart of optical lasers, providing stable, transform-limited pulses. Until now, laser oscillators have been available only in the infrared to visible and near-ultraviolet (UV) spectral region. In this paper, we present a study of an oscillator operating in the 5- to 12-keV photon-energy range. We show that, using the [Formula: see text] line of transition metal compounds as the gain medium, an X-ray free-electron laser as a periodic pump, and a Bragg crystal optical cavity, it is possible to build X-ray oscillators producing intense, fully coherent, transform-limited pulses. As an example, we consider the case of a copper nitrate gain medium generating ∼ 5 × [Formula: see text] photons per pulse with 37-fs pulse length and 48-meV spectral resolution at 8-keV photon energy. Our theoretical study and simulation of this system show that, because of the very large gain per pass, the oscillator saturates and reaches full coherence in four to six optical-cavity transits. We discuss the feasibility and design of the X-ray optical cavity and other parts of the oscillator needed for its realization, opening the way to extend X-ray-based research beyond current capabilities.

Keywords: X-ray cavity; X-ray laser; amplified spontaneous emission; transform-limited pulses.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.