Nanocomposite Fiber Based on Natural Material for Water Disinfection under Visible Light Irradiation

Nanomaterials (Basel). 2020 Jun 18;10(6):1192. doi: 10.3390/nano10061192.

Abstract

In the last decade, pathogenic bacteria and organic micropollutants have become a major issue in the water purification process. Heterogeneous photocatalysis is a low-cost and an ecofriendly process, which provides a sustainable solution for water treatment and its utilization in rural areas. In this context, we studied the generation and the surface engineering of polyacrylonitrile (PAN)/goethite composite nanofibers for photocatalytic water remediation under visible-light illumination. The photocatalytic activity was evaluated for dye (methylene blue) degradation and bacteria inactivation, as contaminant models, of the composite nanofibers. The PAN/goethite nanofibers were elaborated by an electrospinning technique, and the morphology and the composition, before and after spin coating, were investigated by Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX). The results showed partially intercalated structures of the PAN/goethite Composite-nano-fiber (CNF) were identified by SEM and EDX analysis. The composite nanofibers exhibited high photoefficiency upon dye bleaching (only 10% left after 5 h of illumination) and bacterial deactivation Escherichia coli and Clostridium perfringens (4.4- and 3.5-fold, respectively, in less than 5 h). The steadiness and pliancy of the generated nanofibers provide a promising application in the continuous flow system.

Keywords: bacteria; goethite; methylene; nanocomposite fiber; photocatalysis; visible-light.