Effect of Ammonia and Indole-3-acetic Acid Producing Endophytic Klebsiella pneumoniae YNA12 as a Bio-Herbicide for Weed Inhibition: Special Reference with Evening Primroses

Plants (Basel). 2020 Jun 18;9(6):761. doi: 10.3390/plants9060761.

Abstract

Information on the use of endophytic bacteria as a bio-herbicide for the management of weed control in agricultural fields is limited. The current study aimed to isolate endophytic bacteria from evening primroses and to screen them for their bio-herbicidal activity. Two isolated endophytic bacteria (Pantoea dispersa YNA11 and Klebsiella pneumoniae YNA12) were initially screened for citrate utilization and for indole-3-acetic acid (IAA) and catalase production. The preliminary biochemical assessment showed YNA12 as a positive strain. Ammonia, catalase, and IAA in its culture filtrate were quantified. Gas Chromatography/Mass Spectroscopy- Selective Ion Monitoring (GC/MS-SIM) analysis revealed the production of IAA by YNA12 in a time-dependent manner. YNA12 also exhibited significant ammonia-producing potential and catalase activity against hydrogen peroxide. The YNA12 culture filtrate significantly inhibited the germination rate of evening primrose seeds, resulting in a marked reduction in seedling length and biomass compared with those of the control seeds. Moreover, the culture filtrate of YNA12 significantly accelerated the endogenous abscisic acid (ABA) production and catalase activity of evening primrose seedlings. Macronutrient regulation was adversely affected in the seedlings exposed to the culture filtrate of YNA12, leading to inhibition of seed germination. The current results suggest that endophytic YNA12 may be used as a potent bio-herbicidal agent for controlling weed growth and development.

Keywords: IAA; abscisic acid; bio-herbicide; catalase; endophyte; macronutrients.