Quantitative electric field mapping of a p-n junction by DPC STEM

Ultramicroscopy. 2020 Sep:216:113033. doi: 10.1016/j.ultramic.2020.113033. Epub 2020 May 30.

Abstract

Local electromagnetic fields in a specimen is measured at high spatial resolutions using differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). According to previous studies, DPC signals can be quantified by measuring the center of mass of the diffraction pattern intensity and/or performing a deconvolution method based on a phase contrast transfer function (PCTF). However, when using a segmented detector, the field strength has been considerably underestimated for a very thick specimen. The main cause of the underestimation is assumed to be inelastic scattering, mainly bulk plasmon scattering. In this study, we develop a method to remove this inelastic scattering effect from segmented detector DPC signals by modifying the PCTF deconvolution method. Field quantification results using this new technique are compared with those using pixelated detector DPC and electron holography, and all results indicated good agreement within an error margin.