Dual soluble epoxide hydrolase inhibitor/PPAR-γ agonist attenuates renal fibrosis

Prostaglandins Other Lipid Mediat. 2020 Oct:150:106472. doi: 10.1016/j.prostaglandins.2020.106472. Epub 2020 Jun 20.

Abstract

Renal fibrosis is a contributor to chronic kidney disease and an important predictor of long-term prognosis. We developed a dual soluble epoxide hydrolase inhibitor-PPAR-γ agonist (sEHi/PPAR-γ), RB394, and investigated its ability to attenuate renal fibrosis in a mouse unilateral ureteral obstruction (UUO) model. RB394 efficacy was compared to an sEH inhibitor (sEHi), a PPAR-γ agonist rosiglitazone (Rosi), or their combination (sEHi + Rosi). All interventional treatments were administrated in drinking water 3 days after UUO induction surgery and continued for 7 days. UUO mice developed renal fibrosis with higher collagen formation and RB394 significantly attenuated fibrosis (P < 0.05). Renal expression of α-smooth muscle actin (α-SMA) was elevated in UUO mice and all treatments except sEHi significantly attenuated renal α-SMA expression. Renal mRNA expression fibrotic and fibrosis regulators were higher in UUO mice and RB394 and sEHi + Rosi treatments attenuated their expression. Renal inflammation was evident in UUO mice with increased infiltration of CD45 and F4/80 positive cells. RB394 and sEHi + Rosi treatments attenuated renal inflammation in UUO mice. UUO mice had renal tubular and vascular injury. Renal tubular and vascular injuries were attenuated to a greater extent by RB394 and sEHi + Rosi than sEHi or Rosi treatment alone. Renal mRNA expression of oxidative stress markers were significantly higher in UUO mice (P < 0.05). RB394 and sEHi + Rosi attenuated expression of oxidative stress markers to a greater extent than other interventional treatments (P < 0.05). These findings demonstrate that RB394 can attenuate renal fibrosis by reducing renal inflammation, oxidative stress, tubular injury, and vascular injury. In conclusion, RB394 demonstrates exciting potential as a therapeutic for renal fibrosis and chronic kidney disease.

Keywords: Bifunctional drug; PPAR-γ agonist; Renal fibrosis; Soluble epoxide hydrolase inhibitor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Epoxide Hydrolases / antagonists & inhibitors*
  • Fibrosis / etiology
  • Fibrosis / metabolism
  • Fibrosis / pathology
  • Fibrosis / prevention & control*
  • Kidney Diseases / etiology
  • Kidney Diseases / metabolism
  • Kidney Diseases / pathology
  • Kidney Diseases / prevention & control*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • PPAR gamma / agonists*
  • Ureteral Obstruction / complications*

Substances

  • PPAR gamma
  • Epoxide Hydrolases