Amphiphilic Dicyclopentenyl/Carboxybetaine-Containing Copolymers for Marine Fouling-Release Applications

ACS Appl Mater Interfaces. 2020 Jul 29;12(30):34148-34160. doi: 10.1021/acsami.0c07599. Epub 2020 Jul 14.

Abstract

Zwitterionic materials received great attention in recent studies due to their high antifouling potential, though their application in practical coatings is still challenging. Amphiphilic polymers have been proven to be an effective method to combat fouling in the marine environment. This study reports the incorporation of small amounts of zwitterionic carboxybetaine methacrylate (CBMA) into hydrophobic ethylene glycol dicyclopentenyl ether acrylate (DCPEA). A new set of copolymers with varying amphiphilicities was synthesized and coated on chemically modified glass substrates. The antifouling capabilities were assessed against the diatom Navicula perminuta and multiple species in the field. Unsurprisingly, high diatom densities were observed on the hydrophobic control coatings. The integration of small zwitterionic contents of only ∼5 wt % was already sufficient to rapidly form a hydrophilic interface that led to a strong reduction of fouling. Ultralow fouling was also observed for the pure zwitterionic coatings in laboratory experiments, but it failed when tested in the real ocean environment. We noticed that the ability to absorb large amounts of water and the diffuse nature of the interphase correlate with the adsorption of silt, which can mask the hydrophilic chemistries and facilitate the settlement of organisms. The amphiphilic coatings showed low fouling in dynamic short-term field exposures, which could be explained by the reduced tendency of the coatings for sediment adsorption.

Keywords: Navicula perminuta; antifouling; biofouling; diatom; methacrylate; zwitterion.

MeSH terms

  • Acrylates / chemistry
  • Biofouling / prevention & control*
  • Diatoms / physiology*
  • Hydrophobic and Hydrophilic Interactions
  • Methacrylates / chemistry
  • Polymers / chemistry*
  • Surface Properties

Substances

  • Acrylates
  • Methacrylates
  • Polymers
  • acrylic acid