A two-stage bilateral ischemia-reperfusion injury-induced AKI to CKD transition model in mice

Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F304-F311. doi: 10.1152/ajprenal.00017.2020. Epub 2020 Jun 22.

Abstract

Acute kidney injury (AKI) significantly increases the risk of development of chronic kidney disease (CKD). Recently, our laboratory generated a mouse model with the typical phenotypes of AKI to CKD transition in the unilateral kidney. However, AKI, CKD, and even the transition from AKI to CKD usually occur bilaterally rather than unilaterally in patients. Therefore, in the present study, we further modified the strategy and developed a new model of CKD transitioned from bilateral ischemia-reperfusion injury (IRI) in C57BL/6 mice. In this new model, unilateral severe IRI was performed in one kidney while the contralateral kidney was kept intact to maintain animal survival; then, following 14 days of recovery, when the renal function of the injured kidney restored above the survival threshold, the contralateral intact kidney was subjected to a similar IRI. Animals of these two-stage bilateral IRI models with pedicle clamping of 21 and 24 min at a body temperature of 37°C exhibited incomplete recovery from AKI and subsequent development of CKD with characteristics of progressive decline in glomerular filtration rate, increases in plasma creatinine, worsening of proteinuria, and deleterious histopathological changes, including interstitial fibrosis and glomerulosclerosis, in both kidneys. In conclusion, a new bilateral AKI to CKD transition animal model with a typical phenotype of CKD was generated in C57BL/6 mice.

Keywords: acute kidney injury; animal model; chronic kidney disease; ischemia-reperfusion injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury / complications*
  • Acute Kidney Injury / pathology*
  • Animals
  • Disease Models, Animal
  • Fibrosis / metabolism
  • Glomerular Filtration Rate / physiology
  • Kidney / pathology
  • Male
  • Mice, Inbred C57BL
  • Proteinuria / physiopathology
  • Renal Insufficiency, Chronic / pathology*
  • Reperfusion Injury / complications
  • Reperfusion Injury / pathology*